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Numerical Analysis of the Vortical Flow Around
a Delta Wing-Canard Configuration

A. Das* and J. M. A. Longot
DLR, German Aerospace Research Establishment, Braunschweig D-38022, Germany

In this article a numerical study of the vortical flows around a delta-shaped wing, with and without canard,
is undertaken by solving the Euler equations. The analysis elucidates the essential physics that are involved in
establishing the complex vortical flows around the configurations, especially with the required radial pressure
gradients that provide the accelerating forces for spiraling. Further emphasis is put in studying the flow gradients
arising over the wing surface and along the vortex axis. An interesting physical feature is the occurrence of two
saddle points on the vortex axis at high angles of incidence, one causing flow reversal and the other the vortex
bursting. The beneficial effect of the canard vortex on the wing vortex has been clearly demonstrated, it leads
to a significant retardation of the vortex bursting. All essential experimental findings known until now have
been closely reproduced, and thus, confirmed and elucidated by the numerical results.

Nomenclature
A = Jacobian matrix
a, a* = local and critical speed of sound
b = span of a wing
CL, CD-> CM = tota^ n'ft> drag, and moment coefficient
cp = pressure coefficient
cp, cv = specific heats
D = dissipation operator
E = energy content in unit mass of the medium
e = internal heat energy in unit mass of the

medium
F, G, H = flux quantities in x, y, and z directions
F, G, H = flux quantities in f, 17, and f directions
/„ = accelerating force per unit mass in a spiraling

flow
h, h() = static and total enthalpy in unit mass of the

medium
/, 7, k = grid notations
J = determinant of Jacobian matrix
k = heat flow coefficient
/(r/), /„ = chord length and total length of a delta wing
M, M-s_ = local and onflow Mach number
M* = Mach number based on critical speed of

sound
n = normal to a surface
/?, /?„ = static pressure in the spiraling flow and in the

onflow
Po, A),- = total pressure in the spiraling flow and in the

onflow
Q = flux balance in elemental volume
q = heat flow
R = gas constant
r, r(} = radial distance in the spiraling vortex and to

the wing leading edge
S = surface area
5M., Sc = surface area of the wing and canard
5 = entropy
s(£), s = local and maximum half-span of the wing
7\ T() = static and total temperature in the flowfield
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t = time
U = physical variables in a flowfield
u, v, w = velocity components in Cartesian coordinates
V, Vy, = local and onflow velocity
va = axial velocity along the vortex core
t'r, vf, = crossflow and helical velocity in the spiraling

vortex
vr, T>O , vx = velocity components in cylindrical

coordinates
X1 — physical coordinates
jc, r, -0 = cylindrical coordinates
x, y, z = Cartesian coordinates
a = angle of incidence
j8 = angle of yaw
y = vorticity in the flowfield
e = geometric setting angle of the canard
K = ratio of specific heats
v = pressure sensor in the dissipative operator
f, 77, £ = curvilinear coordinates
p, p() = static and stagnation medium density
a\, = stress tensor due to viscosity
9 = sweep angle of the wing leading edge
X _ = flux tensor in the flowfield
n, fl = volume of a cell element in Cartesian and

curvilinear coordinate system

I. Introduction

F OR studying complex flows arising from the motion of
bodies in an unbounded medium, it is usual to base these

studies on the numerical solutions of Navier-Stokes equa-
tions, and more frequently on the Euler equations, when the
effects of viscosity and heat conductivity of the medium are
small and remain confined to limited regions. For detailed
analysis of the physics of the flowfields with systematic pa-
rameter variations, it is preferable to use the Euler equations,
due to the relatively less computational effort.

The standard numerical procedures that are extensively used
now, comprising grid generation, numerical simulation of the
partial differential equations and their solution, are consid-
ered to be well-established. Some basic numerical methods
formulated with finite difference and finite volume schemes
as described in Refs. 1-3 are used to solve the Euler equa-
tions, while the methods for solving Reynolds-averaged Na-
vier-Stokes equations are dealt with in Refs. 4-6. For tur-
bulent flows it is essential to model the turbulent exchanges
producing viscous stresses, for which the classical eddy vis-
cosity concept has proven to be quite useful.
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The efficiency of a numerical code is measured by three
essential criteria: 1) good accuracy with robustness, 2) ac-
ceptable CPU time, and 3) easy applicability to complex flow-
fields. For good accuracy a primary concern is to ensure a
proper numerical simulation of the field equations and of the
boundary conditions. For these, a prerequisite is the gener-
ation of high-quality field grids around the moving wings and
bodies. The efficiency of the grid generation technique is
measured by the smoothness and orthogonality of the meshes
and required grid fineness, especially in regions of high flow
gradients. Some basic methods that are now widely in use to
produce acceptable field grids in body-fitted coordinates fol-
low the procedures described in Refs. 7-9. Successful imple-
mentation of the numerical field methods for solving the Euler
and Navier-Stokes equations gave a big impetus to study the
vortical flows arising over slender delta wings moving with
incidence angles, as they bring in a large additional contri-
bution to the lift force, which is termed as vortex lift. Exten-
sive efforts concerning this subject have been made in recent
years, as evident from the great number of published pa-
pers.10-19

The vortical flowfields of the delta wings are characterized
by two basic phenomena: 1) the loss of total pressure in the
spiraling flows as a function incidence angle and Mach number
and 2) the breakdown of the vortical structure of the flow at
high incidence angles, the latter causing a loss in the additional
vortex-lift. These phenomena are little affected by the vis-
cosity of the medium, as has been confirmed by the numerical
solutions of the Euler and Navier-Stokes equations as well
as by the experimental results. Some useful insights into the
physics of these interesting phenomena are given.14

Further subjects of numerical studies have been the flow-
fields of double-delta or strake wings,20-21 while extensive studies
on the flowfields of delta-shaped wing-canard combinations
are made in Refs. 22-21. The experimental works that are
useful to validate the results of numerical studies are cited in
Refs. 28-36, these being, however, mostly confined to spe-
cific and limited speed ranges at each test.

For the physics of inviscid and viscous flowfields with vortex
formation, classical literature37'41 contain some basic foun-
dations, whereas for the numerical treatment of the partial
differential equations, Ref. 42 proves to be quite useful.

The subject of this article is to undertake a detailed nu-
merical analysis on the physics of the vortical flowfields, es-
pecially for a delta-shaped wing-canard configuration. Besides
reproducing the experimental findings, the analysis explains
the physical conditions that are needed to establish the spi-
raling flows, and elucidate the nature of vortex interactions,
which leads to a suppression of the vortex breakdown to high
incidence angles. The findings of these numerical analysis can
form the basis for achieving an efficient wing-canard config-
uration with outstanding aerodynamic properties.

II. Basic Equations Describing the Flowfields of
Bodies Moving in an Unbounded Medium

The disturbance fields arising from motions of bodies in a
compressible viscous medium are essentially described by the
Navier-Stokes equations, based on the conservation laws of
mass, momentum, and energy in an elementary volume mov-
ing with the coordinate system. The field equations can be
written in divergence form with the dependable variables p,
pu, pv, pw, and pE, or alternately in nondivergence form. In
the latter case the equations can also be reduced in terms of
the primary variables p, u, v, w, and p. For the numerical
solution of these equations it is purposeful to use body-fitted
curvilinear coordinates for having desirable field grids and
better fulfillment of the boundary conditions.
A. Flow Equations in Conservation Law Form for Viscous and
Nonviscous Medium

For a fluid medium at standard temperature and pressure,
the Navier-Stokes equations describing the disturbance field

in an unbounded medium can be written in divergence form
in the following way:

d(PV)
dt

+ div(pV) = 0

+ div(K, pV) + div(/?7) - {div a-,} - 0

d(pE)
dt + div(pEV) + div(pV) - {div(k grad T)

+ div(1/-ov)} = 0

with / = (/:/ + j:j + k:k) as a unit dyad. The divergence of
the momentum flux in the second expression contains a dyadic
product comprising all nine components of the flux in the
three coordinate directions, with V = iu + jv + kw.

Furthermore,

E = e + (V2/2), p = (K - l)p[E - (V2I2)} = pRT

<r , = viscous stress tensor, q = k grad T = heat flux, and
e = cvT.

If the flow is concerned with turbulent exchange of mo-
mentum, a major task is to model the viscous stresses <rv in
order to have a complete formulation of the mathematical
problem. A usual procedure is to use eddy-viscosity model-
ing.6 For a perfect medium the terms in the braces drop out,
and Eq. (1) reduces to the Euler equations in divergence form.

B. Euler Equations and Their Extended Versions for Detailed
Study of Spiraling Vortical Flows

In Eq. (1), if the relation of the first equation is used in
the other two, and the terms in braces are neglected, it leads
directly to the classical Euler equations known in the literature

^ + p div V = 0

DV
P~Dt

Dh() dp
~

where

= 5 + v'grad

For analyzing the accelerating forces in a spiraling flow, it
is convenient to have the components of the Euler momentum
equations in Eq. (2) expressed in cylindrical coordinates. This
can be easily done by using the relations:

grad = / - + j : - — + k — and V = ivr + jv^ + kvx
Of T O\J OX

The momentun equation (2) can be rewritten in Lamb's
version

DV 8V V2 1
—— - — + grad Y + y x V = -- grad p (3)

with y = iyr + jy^ + kyx.
Adding cp grad T to both sides of Eq. (3), the Euler mo-

mentum equation can be recast in the Lamb-Crocco version,
which reads

8V I
— + grad hl} + y x V = — grad p + cp grad T (4)
dt p
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For steady adiabatic flow the second law of thermodynamics
yields the following relation for the vorticity in the flowfield:

y x V = cp grad T - (l/p)grad p = T grad s (5)

Equations (2-5) will be used extensively to analyze the phys-
ics of the spiraling flows arising on slender delta wings.

C. Numerical Simulation of the Field Equations and an Outline on
the Method of Solution

For the numerical solution of the Euler equations, as ex-
pressed in Eq. (1) with the terms in braces being deleted, it
is purposeful to write them in a universal vector form:

dt (6)

where the solution vector U and the flux density tensor \ are

defined as

U =

P
pu
pv
pw

and \ =

PV •
puV + pix
pvV + piv
pwV 4- piz

_pEV + PV.

(7)

In Cartesian system of coordinates, the flux tensor has the
expression:

X = Fix + Giy + Hiz (8)

The Euler equation can be expressed also in integral form
by integrating Eq. (6) over an arbitrary volume U enclosed
by a surface S. If the volume integral of the flux tensor is
converted to surface integral by using Gauss theorem, one
obtains

f + Hl*-ds = °ot \L
(9)

where U = 1/H / U dft, and dS is a surface element of S with
n as its unit outer-normal vector. The Euler equations for
unsteady flowfields as expressed by Eq. (6) being of hyper-
bolic type need the specification of the following conditions
for the solution of a given problem: 1) the initial condition
as prescribed by the onflow at a time t = t(]\ 2) boundary
condition on the solid surface fulfilling the flow tangency con-
dition V-n = V-^-n + vn = 0; 3) boundary condition at the
far field based on the characteristic relations, so that the prop-
agation of informations from inside and outside are properly
matched, thus preventing spurious reflections into the en-
closed domain; and 4) the condition of periodicity at the inner
cuts used in the solution domain, and also the condition of
matching of the flow variables at block boundaries of multi-
block grid topologies.

In order to fulfill the boundary conditions at the body sur-
face quite accurately, it is preferable to use body-fitted cur-
vilinear coordinates in the physical space.

For the generation of body-fitted grids, one can refer to
the cited literature.7 9 Depending on the nature of configu-
rations, one has to select the grid topology, which may be of
O-O, C-O, H-O, or H-H type. In case of the delta wing
configuration, the O-O or C-O grid structures are most pref-
erable, as they yield suitable grid clustering close to the body
surface and in the regions of leading and trailing edges in a
natural way.

The basic solution scheme for the Euler Eq. (9) follows a
finite volume spatial discretization for the flux balance with
Runge-Kutta integration in time for the solution vector U,
as described by Jameson et al.2 This has been extended and

implemented in the DLR-Euler code CEV CATS as a cell
vertex discretization,3 in which U is evaluated at the vertices
of the mesh cells. Since the equations are discretized using
central differences, this causes a decoupling of the terms for
even- and odd-numbered cell centers, which makes the code
sensitive to saw-tooth-like error growth, thus needing an ad-
ditional numerical dissipation term. The Runge-Kutta time-
stepping scheme is applied to an extended version of the Euler
equation:

(10)

where Q($ denotes the flux balance of the cell as expressed
by the integral terms of Eq. (9), and Dijk introduces a small
artificial viscosity for damping high-frequency oscillations.

When the solution of Eq. (10) for a steady state is con-
cerned, then several acceleration techniques may be em-
ployed, which are extensively analyzed.3

III. Numerical Analysis of the Vortical Flowfields
Around a Delta-Shaped Wing-Canard Configuration
The wing canard configuration used in this investigation is

a cropped delta wing of 65-deg sweep angle coupled closely
with a cropped delta canard of 60-deg sweep, both having a
symmetrical cross-sectional profile with sharp leading edges
as shown in Fig. 1. This model has already been studied in
the international vortex flow experiment, thus having exten-
sive experimental data that are illustrated in Refs. 28-30.

It is already mentioned in Sec. II.C that for delta-shaped
configurations, O-O or C-O grid-topologies are very well-
suited because of the natural grid clustering in the regions of
high flow gradients. Due to the fact that the flowfield of a
delta-shaped wing-canard combination is to be compared with
that of a wing alone, the use of O-O or C-O grids would need
separate detailed structuring for the wing alone and then with
the canard placed ahead of the wing. However, with H-H
grid-topology, properly layed around the wing and the canard,
the same grid structure can be retained also for the canard-
off case. This is simply realized by deleting the boundary
condition V-n = 0 on the canard surface, thus allowing the
flow to go through the cells in this region. Thus, the use of
H-H grids provided essential simplicity in the construction of
the meshes and also uniformity in the handling of the wing
with the canard off and on. In order to achieve higher pre-
cision in the flow resolution, especially in the regions of spi-

Fig. 1 Wing-canard configuration with surface- and field-grids for
numerical study.
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raling flows with high flow gradients, a large number of sur-
face and field grids had to be provided for studying the details
of the wing and canard vortices. Such grid refinement was
carried out once for all.

The grid space around the wing was divided into two sym-
metrical blocks, one for the upper region and one for the
lower region of the flowfield. Each block has 120 cells in the
stream wise direction, 72 cells in half of the spanwise direction
and 56 cells normal to the wing midsurface, thus amounting
to a total of about 968,000 cells for the configuration having
symmetrical onflow. The grid generation has been done by
using transfinite interpolation followed by optimization pro-
cedure for orthogonality, based on the solution of the Poisson
equations. The solution of the Euler equations in finite vol-
ume formulation was done by using the DLR-CEVCATS
computer code, whereby several acceleration techniques3 were
employed. The CPU time for obtaining a complete field so-
lution for symmetrical onflow at a given Mach number and
incidence angle of the wing-canard combination amounted
initially to 10 h on the Cray Y-MP, while by introducing
multigrid techniques it could be reduced to about 2.5 h.

In order to determine the sensitivity of the computed so-
lutions to different grid topologies and mesh fineness, exten-
sive study has been made with the wing alone,13-24 where
different combinations of numerical schemes, grid topologies,
and total number of cells were selected in turn. All the so-
lutions for field quantities plotted spanwise or chordwise fol-
lowed quite closely, thus lying in a very narrow band.

A. Structure of the Vortical Flowfields Around a Delta Wing with
and Without Canard

Having the field solution around the wing-canard combi-
nation makes it easy to trace the canard and wing vortices
spiraling downstream along with the flow, as shown in Fig.
2. For analyzing the vortical flow it is useful to have a plot
of the flow quantities at a number of crosswise planes normal
to the symmetric axis of the wing. The velocity fields VCIV»
of the spiraling vortices at a cross-plane £ = 0.6 are shown
in Fig. 3 for M^ = 0.85 and a = 20 deg, once for the wing
alone and then for the wing-canard combination. Because
both the wing and canard have sharp leading edges, it is
evident that the Kutta condition at the edges are well-fulfilled
by the spiraling flow. However, for round leading edges, an
inviscid flow may not separate.16J7 The isolines of cp and A/?0/
/70ac of the vortex fields are illustrated in Fig. 4.

It is evident that in the absence of the canard, the wing
vortex is more intensive. This is due to the fact that the wing
moving alone at a given incidence can impart more downward
momentum to the medium than it can do with the closely
coupled canard ahead of it. In case of a wing-canard com-
bination, the canard first encounters the medium particles
ahead of the wing; the imparted downward momentum caus-
ing canard lift yields the dipole effect or the strength of the
bound vortices of the canard. As a consequence of the Canard
downwash, the wing can now impart reduced downward mo-

Canard - Vortex

Wing - Vortex

L = 0.85 - a = 20° - j; = 0.6

Surface

Fig. 3 Velocity field in the crossplane showing the spiraling vortices
with the canard on and off.

0.4 0.8 T| 1.2 0.4 0.8 r» 1.2

Fig. 2 Spiraling vortices and surface pressure distribution at M^
0.4 and a = 20 deg.

Fig. 4 Isolines of static and total pressure in a cross-plane with the
canard on and off.

mentum to the medium and produce somewhat less lift at a
given angle of incidence, and hence, can emanate less inten-
sive free vortices spiraling around the leading edges. Fur-
thermore, the spiraling canard-vortex moving downstream over
the wing induces downwash and upwash in inboard and out-
board regions relative to its axis, and thus, further modifies
the flowfield around the wing. Also, the mass-flux through
the half-span of the wing gets involved into two vortices com-
pared to one vortex for the wing-alone case, as is evident from
Fig. 3. All these effects can be looked upon as the interaction
of the vortex systems of the wing and canard.

The vortex system of the wing-canard configuration reveals
that a part of the spiraling streamlines around the wing leading
edge wraps around the canard-vortex, while for the wing-
alone case they did join the wing vortex.

B. Analysis of the Flow and Pressure Gradients on the Upper
Surface of the Delta Wing with and Without Canard

The formation of spiraling vortical flow over the moving
delta wing at incidence contributes to highly curved surface
streamlines of increased velocity. As a consequence the so-
called bound vortices that are orthogonal to the streamlines
take up curved shapes.23 The increased surface velocity brings
in an additional vortex lift. In case of a wing-canard combi-
nation, the vortical flow around the wing leading edge be-
comes less intensive, thus causing less negative cp values on
the wing upper surface as shown in Fig. 5. A comparison of
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cPm,n= 145 A M = 0.85 - a = 20

Cp (incr.0.05) Cp (incr.0.15) Stream lines

Fig. 5 Upper surface streamlines and isolines of static pressure with
the canard on and off.

n=o.?5

Fig. 6 Crosswise and chordwise upper surface pressure distributions
with the canard on and off.

the streamlines and iso-c/rlines of the wing upper surface for
a canard-off and -on configuration confirm the findings of
Sec. III.A. The induced upwash of the wing contributes to
an accentuation of the dipole effect of the moving canard
closely ahead of it, and the low surface pressure of the wing
provides a favorable pressure field downstream of the canard
trailing edge. The iso-c/rlines and the streamlines of the ca-
nard upper surface as shown in Fig. 5 indicate that the canard
produces substantial lift force, which can compensate the drop
of the wing lift for a wing-canard combination.

In order to have a clear picture of the changes in pressure
distributions on the upper surface of the wing for canard-on
and -off configurations, a plot of the cp values in a spanwise
direction and of the plp^ values in the chordwise directions
are undertaken in Fig. 6. It is evident that the inducing effect
of the canard-vortex system can be clearly recognized in the
pressure distributions. The changes in the gradients towards
the trailing edge can primarily be attributed to the diminished
lift of the wing for canard-on configuration.
C. Validation of the Numerical Results on Pressure, Force, and
Moment Coefficients by Comparison with Experimental Data

The field quantities yielded by the numerical solution of
the Euler equations for flows around the wing-canard config-
uration have been extensively compared with the experimen-
tal results, both at subsonic and transonic onflows, thus con-
firming acceptable agreements of the crossflow velocity and
pressure fields as well as of the losses in total-pressure in the
spiraling vortices. The effect of viscosity on the surface flow
is appreciable in the experimental data, and it will be pur-
poseful to undertake a comparison of the pressure coefficients
on the wing surface and the resulting forces and moments
arising on the configuration as yielded by the numerical so-
lutions and the measured values.

0 0.2 0.4 0.6 _ 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

Fig. 7 Comparison of the crosswise surface pressure distribution as
yielded by the numerical and experimental results.

Fig. 8 Total forces and pitching-moment with the canard on and off.
Comparison of numerical and experimental results.

The cp distributions across a crossflow plane are shown in
Fig. 7 for onflow Mach number M^ = 0.85 and angles of
incidence a = 10 and 20 deg, both for the wing alone and
the wing-canard configuration. While the solution of the Na-
vier-Stokes equations18 reproduces the experimental data very
closely, it is evident that the solution of the Euler equations
fails to capture the secondary vortex on the wing surface,
arising due to the viscous effects. However, the cp distribution
yielded by the solution of the Euler equations takes up a
typical run such that it partly overshoots and partly under-
shoots the curve yielded by the Navier-Stokes equations. As
such, the resulting forces and moments on the wing surface
are well-reproduced by the numerical solutions of the Euler
equations, as has been demonstrated in Fig. 8. The cL(a) curve
clearly depicts that the additional vortex lift of the wing-ca-
nard configuration is maintained to quite large angles of in-
cidence, thus giving it an outstanding aerodynamical property
as compared to the wing-alone. The numerical results confirm
the findings of the experimental data.

IV. Detailed Study of the Physical Relations in the
Spiraling Vortical Flows Around a Delta-Shaped

Wing-Canard Configuration
The field data as obtained from the solution of Euler equa-

tions and depicted in Sec. Ill allow detailed analysis of their
interrelations. The dynamical and thermodynamical equa-
tions of compressible flow in an inviscid medium can be based
on this.
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The dynamical equations of motion have already been in-
troduced in Eqs. (2) and (3). The field data V - ivr + jv#
+ kvx and /?, p, T being known, the interrelations given in
Eqs. (2-5) can be used for numerical analysis of the physical
relations.

A. Accelerating Forces, Pressure Forces, and Vorticities for
Establishing the Spiraling Flows over a Delta Wing

The numerical method based on Euler equations contains
the momentum balance in the three coordinate directions x,
y, z, or r, ft, *, as expressed in Eqs. (3) and (4). Hence, the
field data in the crossflow planes, as depicted in Fig. 9, must
confirm the balance of the radial accelerating forces in the
r - ft plane, which is essential in establishing the spiraling
flow. The radial components of the accelerating forces per
unit mass are contained in the momentum equation:

c ^ vr v^v,- _ v v,- = ___
dt Vr dr r aft r dx p dr

Equation (11), having the dimension of m/s2, may be re-
written in nondimensional form in the following version:

2.0

dvr dvr
y ——————

dr
v$ dvr
————— ———— __

f dr
dvr
———— -

dx
1

dr (12)

with v = vIV^, p = p/p^, p = plp~, and r = tvjr0, whereby
the last term of the left-hand side (LHS) proves to be quite
small compared to the others, and the first term is zero for a
steady flowfield. Hence, the accelerating forces per unit mass
may be expressed as

'.= -^£ (")
. ^ ^ _ __

Vr dr f dr f ~

Figure 10 elucidates clearly that the pressure force arising
in the field just balances the required accelerating forces,
which conforms to the numerical solution of the Euler equa-
tions. As comparison, the isentropic pressure force can be
derived from the relation

p dr ~ dr p dr

This can be rewritten in nondimensional form as

df
dr dr dr

(14)

(15)

with f = TIT» and V =
It is evident from Fig. 10 that the isentropic pressure force

is insufficient to establish a spiraling flow. The vortex flow
being nonisentropic, the relations given by Eqs. (3) and (5)
at once reveal the vorticity arising in the field. The missing
magnitude of the accelerating force in the crossflow plane (r,
ft) for f = const is contributed by the vorticity, which amounts
to

l dp
-ef-r.\ (16)

Writing in nondimensional form

A * - i f l a p ^afl n^A/, = r * x t , , = - ^ [ - t f - f l t f j (1?)

where A/fl = A/,,r()/V£, y/f = y,,rQ/Vx, and VA - v^/V*.
From Fig. 10 it is evident that the vorticity in the wing vortex

0.8

0.8
T_
TOO

9

P

0.2

1.5

M*
0.5

0.2 0.4 0.6 0.8 _ 1.0
r ——

1.2

Fig. 9 Velocity components and state variables in a cross-plane of
the wing-canard configuration.

-Q.l. -

-0.8

Fig. 10 Accelerating forces in the spiraling flow depicting the re-
quired pressure forces and vorticities for setting in the spiraling.

is significantly influenced by the presence of the canard vor-
tex, needing less A/rt to establish the spiraling as compared
to the case of the wing alone.

Although the numerical analysis confirms clearly the nature
of momentum balance in the spiraling vortical flow arising
over a delta wing, further convincing details can be obtained
by looking into the essential physics of the flow from the
viewpoint of causality and effect.

When spiraling flows arise in an unbounded inviscid me-
dium under the superimposition of a two-dimensional sink on
a potential vortex flow, the resulting velocity and pressure



722 DAS AND LONGO

1.2
M*
0.8

0.4

5r/rm6

0.4 -

b)
0.2 0.4 0.6 0.8 1.0r/|.1.2

M00=0.85
a =20°

c)
Fig. 11 Natural spiraling flow in an unbounded medium and the
vortical flow of a delta wing under severe constraints.

0.2 0.4 0.6 0.8 1.0

Fig. 12 Loss of total pressure in the spiraling flows arising at the
canard and the wing with the canard on and off.

distributions in the field are depicted in Fig. lla. It is evident
that the required accelerating force in the radial direction is
fully contributed by the pressure gradient.

In case of the spiraling flow setting in around a delta wing,
it is subjected to three severe constraints: 1) the high fluid
velocity at the edge caused by the dipoie effect of the lifting
surface, 2) the kinematic condition V-n = 0 at the wing
surface close to the vortex, and 3) the condition v = 0 at the

Fig. 13 Loss of total pressure at the vortex core as a function of a
and M with the canard on and off.

vertical symmetry plane of the wing. Accordingly, the velocity
and pressure distributions that arise over a radial direction
take the shapes as shown in Fig. lib. The indicated isentropic
pressure distribution in the field (dotted line) can in no way
supply the full accelerating force needed for spiraling, as is
elucidated in Ref. 14.

Due to the dipoie effects imposed by a moving lifting sur-
face, bound vortices arise on it in a span wise direction, and
they become highly curved in case of a delta wing at high
incidence. According to Kelvin's vortex law these vortex lines
continue as free vortices in the spiraling flow as illustrated in
Fig. lie. It is by no means compelling that the vorticity vectors
should align with the velocity vectors of the spiraling stream-
lines. An alignment is usual only in a force-free wake, e.g.,
in the downstream of the trailing edge of a large span wing.
The resolution of the force vectors in the spiraling flow depicts
clearly that the vortex force fy act in the right direction to
compensate for the missing accelerating force A/fl, as de-
scribed by Eq. (17). The required disalignments between y
and V vectors are called in according to the natural process
in the flowfield, as confirmed by the numerical analysis.

B. Loss of Total Pressure in the Spiraling Vortices of a Delta
Wing with and Without Canard

From numerical solutions of the field equations, as well as
from the experimental test, it is confirmed that the radial
accelerating force for the spiraling of the vortical flows around
a delta-shaped wing is partly supported by the vorticity force,
which give rise to entropy changes as defined by Eq. (5).

Using the second law of thermodynamics, one can derive
the following relation for the entropy change, and therefrom
the loss in total pressure:

As
~R

This yields

(18)

(19)



DAS AND LONGO 723

The loss of total pressure in an adiabatic flowfield is given by
the relation

(20)

The loss of total pressure in the spiraling flows of the delta
wing with and without canard is depicted in Figs. 12 and 13
for various onflow conditions, revealing clearly that the ca-
nard has a favorable effect on the wing flow such that the
wing vortex keeps up more total pressure on its way down-
stream, and is thus less amenable to breakdown. For the wing
alone, a plot of the total pressure losses for various combi-
nations of numerical schemes and grid topologies, tested ear-
lier, has been undertaken, thus yielding a narrow band, of
which the mean line can be used for comparison with the
results obtained for the wing-canard combination.

C. Flow Gradients Along the Vortex Axis Initiating Saddle Points
with Flow Reversal and Vortex Bursting

The onflow condition along the vortex core may be studied
by applying the following basic equations:

dv VQ dv dt\. 1 dp
v,. —- + — —7 + vx —~ — —~ —

dr r dv dx p dx

^ds I dp dT
T — = yc x vc — —--*- + £„ —dx p dx dx

(21)

with yc = yr + yrt and v(. — vr + tv
Furthermore, the temperature distribution T/T(} along the

vortex core can be determined from the velocity distribution
by using the simple relation for adiabatic flow:

(777;,) + [(K - (22)

The pressure and velocity distribution along the axis of the
wing vortex for the canard-off case is shown in Fig. 14 once

more, for comparison with the canard-on configuration. The
inherent adverse pressure gradient and flow deceleration in
regions near the wing trailing edge is a typical feature of
slender delta wings, as depicted in Fig. 5. The total pressure
p() in the vortex core being subjected to severe loss, especially
at large incidence and high onflow Mach number of the wing,
the fluid particles lose all their kinetic energy in overcoming
the steep pressure gradient and cause the formation of the
first saddle point on the vortex axis, close downstream of the
trailing edge. The flowfield is three dimensional, and so the
saddle point is axisymmetric in the region close to the vortex
axis. The existing pressure gradient upstream of the saddle
point gives rise to a reverse flow and accelerates it, thus en-
countering the oncoming flow from upstream. Hence, a sec-
ond saddle point of similar nature with the streamlines di-
rected radially outwards in the cross-plane comes into being.
When the reverse flow is moderate it may cause only a bulging
of the vortex core, while with strong reverse flow the radial
streamlines of the upstream saddle point cause a total break-
down of the vortex. These findings are also discussed14 and
compared with the physical phenomena occurring in electro-
magnetic fields and are also well-validated by the experimen-
tal results.35-36 With increasing angle of incidence both saddle
points move upstream along the vortex axis.

For steady motion of the wing, the vortical flowfield does
possess a steady character. When vortex breakdown occurs,
the unsteady nature of the flow remains more or less confined
to the burst region. The governing equations and computa-
tional algorithm used for this investigation were formulated
to achieve steady-state solutions. In the region of vortex
breakdown the flowfield induced by the vortex becomes un-
steady and the computed flow variables exhibit on oscillatory
motion of periodic character. Hence, the solution converges
to results that are globally stationary, but locally unsteady,
and hence, converged solutions are assumed once the com-
puted flow variables reach corresponding steady state in terms
of their mean values. Extensive numerical-experimental cor-
relation studies were carried out27 in order to validate this

0.2 0.4 0.6 0.8 1.0

M,

Fig. 14 Numerical analysis of the condition of vortex breakdown,
confirming flow reversal with saddle points.

-0.2 0 0.2 0.4 0.6 l{ 1-1

Vortex-Bulging Vortex-
Stretching

Fig. 15 Numerical analysis of the favorable effect of the canard in
delaying wing-vortex breakdown.
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procedure for the computation of vortical flows up to vortex
breakdown.

In case of a wing-canard configuration the canard vortex is
formed under a similar condition as for a delta wing alone,
however, with some favorable effect of the wing pressure field
decreasing the adverse pressure gradient at the canard trailing
edge region and also accelerating the flow of the canard vortex
core over the wing, as can be seen from Fig. 15. Again, the
run of the numerical curves are well-confirmed by experi-
mental data.36

For studying the flow conditions around the wing of the
wing-canard combination at high angles of incidence, it is
essential to look into the behavior of the vortex flow, espe-
cially in the region of the wing rear part, as has been elucidated
in Fig. 15. Due to less loss in total pressure and less adverse
pressure gradients encountered by the vortex flow, as has been
analyzed in previous sections and depicted in Fig. 13 and Fig.
6, the axial velocity in the vortex core remains upright until
a > 30 deg, only beyond a = 35 deg does the strong decel-
eration set in, causing the appearance of saddle points with
flow reversal and vortex bursting, when a > 40 deg. Less
adverse pressure gradient in the wing rear region causes less
separation of a viscous flow on the wing upper surface. These
are analyzed27 and are the main findings explaining the aero-
dynamic superiority of a wing-canard combination compared
to the wing alone.

It is obvious that the beneficial effect of the canard vortex
on the wing flow continues, even long after the first appear-
ance of vortex bulging over the canard at a = 20 deg, as
illustrated in Fig. 15, it being subjected to subsequent stretch-
ing effects over the wing due to the favorable low pressure.
For angle of incidence a > 30 deg, the canard vortex under-
goes stronger bulging and then a breakdown.

At high angles of incidence the canard vortex can be sta-
bilized by setting the canard with a negative angle so that
flow reversal in the canard vortex is highly suppressed until
a > 40 deg, as shown in Fig. 16. However, it is evident that
the axis of the canard vortex over the wing is now shifted
upward, and hence, the negative setting of the canard remains

£ = 0 °

0.5 1,0
Wing

a = 30°

a = 30 a = 35 a = 40

Fig. 16 Negative setting of the canard angle contributing to a sta-
bilization of the vortex system of the wing.

Fig. 17 Isolines of upper surface static pressure confirming the ben-
eficial effect of the negative setting of the canard on the wing flow.

ineffective for the flow at the rear part of the wing, when a
> 30 deg. The corresponding pressure distribution on the
upper surface of the wing-canard configuration at moderate
and high angles of incidence are depicted in Fig. 17 for the
canard setting with s = 0 and -10 deg.

The numerical study and analysis confirms all the findings
of the wind-tunnel experiments and also of flight tests, con-
cerning the outstanding aerodynamic properties of delta-shaped
wing-canard configurations.

V. Conclusions
In order to study the complete details of a flowfield it is

essential to consider the effects of viscosity, especially in re-
gions of high cross gradients in turbulent flows. However, the
amount of effort to solve the Navier-Stokes equations for
complex flowfields may sometimes be too high. When the
effects of viscosity and heat conductivity remain confined to
small regions, the solution of the Euler equations proves to
be quite useful in yielding the main features of a flowfield,
especially when slender delta wings are concerned. Having
this objective in view, numerical studies on the flowfields of
delta wings and delta-shaped wing-canard configurations have
been pursued intensively in recent years.

In this article, special emphasis has been put on analyzing
the basic physics of the vortical flows, concerning the accel-
erating forces and the loss of total pressure needed for setting
in the spiraling motion. Further characteristic features are the
interactions of the vortex system and the condition that leads
to an essential stabilization of the wing vortex against its
breakdown until at much higher incidence angles. The field
data yielded by the solution of the Euler equations are ade-
quate to establish dynamical and thermodynamical relations
in the spiraling flows, which elucidate all the findings known
until now from experiments, including the condition of flow
deceleration and reversal along the vortex axis preceding the
bulging and breakdown of the vortex structure. For analyzing
the details of the complex flows in the region containing re-
verse flow with vortex bursting, it is essential to use numerical
codes for unsteady flows with proper simulation of the time
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steps. Also, when the numerical methods for solving the field
equations can be extended to include efficient and reliable
automatic grid adaptive techniques, test cases may be taken
up by using the solution of Navier-Stokes equations and com-
paring them with the present results.
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